SLDI Project Goes Carbon Negative

Biochar permanently sequesters carbon and promotes plant growth.

“Climate change is inevitable, proceeding and even accelerating.”

With those alarming opening words, British scientist James Lovelock, author of the new book, “The Vanishing Face of Gaia: A Final Warning,” is delivering a sobering message to large and influential audiences around the world. He says there’s nothing we can do now but adapt and survive. He claims it is too late for sustainable development and says civilization’s best strategy is “sustainable retreat.” If we stopped burning fossil fuels tomorrow, he explains, it wouldn’t do much. We’ve already released enough carbon over the past hundred years to push us past the point of no return.

When pushed, Lovelock says, the only way we could do something meaningful to avoid catastrophe is to extract and permanently store CO2 from the atmosphere, in addition to dramatically reducing our emissions. And the approach with the most potential, says Lovelock, is to turn biomass material into charcoal, now re-branded as “biochar,” in a process known as “pyrolysis” and then bury it. The biochar, unlike the original biomass, can’t rot and release CO2 into the atmosphere. It doesn’t oxidize. It is chemically stable for hundreds of years, meaning the carbon is permanently sequestered. “This makes it safe to bury in the soil or in the ocean,” writes Lovelock.

Lovelock isn’t alone in his enthusiasm for biochar sequestration. Australian biologist Tim Flannery, author of the bestselling climate-change book, “The Weather Makers,” is an avid supporter of the approach. James Hansen, head of the NASA Goddard Institute for Space Studies and a professor of Earth sciences at Columbia University, also sees an important role for turning biomass into charcoal as long as it’s done responsibly.

If we’re serious about halting the rise of – and eventually lowering – CO2 concentration in the atmosphere, biochar could prove the best way. It also allows us to more sustainably manage organic waste from municipalities, croplands, wastewater treatment plants, and a certain amount of residues from forests. The problem, as with all other climate-mitigation approaches, comes with reaching scale. Can biochar be produced to a large enough scale to make a measurable impact? The answer lies in the triple-bottom-line perspective. In other words, the only way this will happen is if it can be produced in ways that meet the needs of people, planet and profit.

Biochar and Sustainable Land Development

Key factors in developing the social, environmental and economic potential for biochar lie not only in its carbon-sequestration abilities, but in the other valuable properties that the process brings to sustainable land development best practices.

Biochar production is modeled after a process begun thousands of years ago in the Amazon basin, where islands of rich, fertile soils called “terra preta” were created by indigenous people. Anthropologists speculate that cooking fires and kitchen middens along with deliberate placing of charcoal in soil resulted in soils with high fertility and carbon content. These soils continue to “hold” carbon today and remain so nutrient rich that they have been dug up and sold as potting soil in Brazilian markets.

When added to soils, biochar’s impressive capacity to retain nutrients can reduce fertilizer requirements while increasing crop yields. It can also be used for commercial potting soils. Research is now confirming benefits that include:

  • Reduced leaching of nitrogen into ground water
  • Possible reduced emissions of nitrous oxide
  • Increased cation-exchange capacity
  • Moderating of soil acidity
  • Increased water retention
  • Increased number of beneficial soil microbes

 Plants simply grow better – far better – in biochar enriched soil! Biochar can improve almost any soil. Areas with low rainfall or nutrient-poor soils will benefit the most. Biochar systems can reverse soil degradation and create sustainable food and fuel production in areas with severely depleted soils, scarce organic resources, and inadequate water and chemical fertilizer supplies. Low-cost, small-scale biochar production units can produce biochar to build garden, agricultural and forest productivity. And with the addition of an engine or turbine, these systems can produce a biogas that creates distributed systems for heating, cooling and electricity.

The total benefits that potentially flow from biochar production and use include waste reduction, energy co-production, improved soil fertility and structure, and climate change mitigation. Not all of these benefits are well accounted for under current economic systems, but under the carbon-constrained economy most are projecting for the near future, the climate mitigation benefit is likely to be accounted for as an economic benefit.

Profitability of biochar systems will be especially sensitive to the cost and quality of the biomass feedstock that goes into the system, as well as to prices for energy and the carbon capping and trading markets. Farming and gardening systems stand to profit from the soil and water quality benefits biochar provides. Forested, preserve and agricultural land provides ready supply of the needed biomass feedstock. And as waste management systems and regulations “catch up” to this opportunity, therein lies another virtually unending supply of needed biomass.

International Biochar Initiative

The International Biochar Initiative (IBI) was formed in July 2006 at a side meeting held at the World Soil Science Congress (WSSC) in Philadelphia, Pennsylvania. At the 2006 meeting, individuals and representatives from academic institutions, commercial ventures, investment bankers, non-governmental organizations, federal agency representatives, and the policy arena from around the world acknowledged a common interest in promoting the research, development, demonstration, deployment (RDD&D) and commercialization of the promising technology of biochar production.

The mission of the IBI is to provide a platform for the international exchange of information and activities in support of biochar research, development, demonstration, and commercialization. IBI advocates biochar as a strategy to:

  • improve soil quality;
  • reduce greenhouse gas emissions and sequester carbon; and
  • improve water quality by filtering agrochemicals.

 IBI also promotes:

  • sustainable co-production of clean energy and other biobased products as part of the biochar process;
  • efficient biomass utilization in developing country agriculture; and
  • cost-effective utilization of urban, agricultural and forest co-products.

 SLDI partners with Ocean Mountain Ranch in effort to go “Carbon Negative”

Fossil fuels are carbon-positive — burning them adds more carbon to the air. Ordinary biomass fuels are carbon neutral — the carbon captured in the biomass by photosynthesis would have eventually returned to the atmosphere through natural processes — burning plants for energy just speeds it up. Biochar systems can be carbon negative because they retain a substantial portion of the carbon that would otherwise be emitted by the plants or waste matter when it rots. The result is a net reduction of carbon dioxide in the atmosphere.

Located in the headwaters of the Port Orford Community Stewardship Area in Southern Oregon, Ocean Mountain Ranch (OMR) is a mixed-use development project that incorporates residential, agricultural, educational, recreational, and industrial uses. It overlooks the newly-designated Redfish Rocks Marine Reserve and the largest remaining old growth forest on the southern coast in Humbug Mountain State Park. OMR is planned to be developed pursuant to a forest stewardship management plan which has been approved by the Oregon Department of Forestry and Northwest Certified Forestry under the high standards of the Forest Stewardship Council (FSC). OMR will provide for long-term yield of high quality hardwood, softwood, and wildlife habitat. OMR is also serving as a pilot program and is expected to achieve carbon negative status through the utilization of low impact development practices, energy efficient buildings, renewable/clean energy systems, distributed waste management systems, and biochar production, with certification as a SLDI-Certified Sustainable Project.

The land development industry is uniquely positioned to utilize SLDI best management practices to take advantage of emerging ancient and new biochar technologies to help address a multitude of pressing environmental, social and economic concerns by balancing the needs of people, planet and profit – for today and future generations. We encourage you to learn more about these opportunities for your projects by contacting SLDI Executive Director Terry Mock at tmock@sldi.org.

 Learn More About Integrating Biochar into Your Projects           

First, go to the IBI webpage at: http://www.biochar-international.org to learn more about the substantial benefits of biochar.
Then contact SLDI to talk about making it happen.
Republished from August, 2009 issue of Sustainable Land Development Today magazine.

Sustainable Land Development Initiative

For the latest SLDI tweets, click here.


The 21st century will overturn many of our previously-held assumptions about civilization. The challenges and opportunities land development stakeholders now face – to fulfill the needs of society and achieve a favorable return on investment without harming the environment – have vast implications on the sustainability of our communities around the world.



SLDI - Sustainable Land Development Initiative is a stakeholder social media association now positioned to help transform the industry that creates the very infrastructure of our civilization. SLDI is dedicated to delivering sustainable land development technology and knowledge resources to promote and enable fully integrated sustainable land development worldwide.

How do we develop a sustainable civilization?
By delivering the "holy grail of sustainable decision making" - a universal geometrical algorithm that balances the needs of people, planet and profit - The SLDI Code™
The World’s First Sustainable Development Decision Model is symbolized as a geometrical algorithm that balances and integrates the triple-bottom line needs of people, planet and profit into a holistic, fractal model that becomes increasingly detailed, guiding effective decisions throughout the community planning, financing, design, regulating, construction and maintenance processes while always enabling project context to drive specific decisions.

SLDI
2400 Green Street, Suite 201
Dubuque, IA 52001
563-690-2020
Contact: twernke@sldi.org


SLDI Co-founders:
Terry Mock
Tony Wernke

Read The Fractal Frontier - Sustainable Development Trilogy.
Read Developing a Sustainable Endgame for the Global Economy
See history and evolution of SLDI @ SLDI Foundational Articles